-2/5 -2/5 |
6 6 |
1/2 1/2 |
sum(2^n*n^(-n)*factorial(n), n, 1, +Infinity) sum(2^n*n^(-n)*factorial(n), n, 1, +Infinity) |
1147/495 1147/495 |
Traceback (click to the left of this block for traceback) ... ValueError: Integral is divergent. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_15.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("I2ludGVncmFsIHRlc3QKIzEKdmFyKCd4JykKZih4KT0yXngqc2luKHBpLygyXngpKQppbnRlZ3JhbChmKHgpLHgsMSxvbyk="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/tmp/tmpP1uyZx/___code___.py", line 6, in <module> exec compile(u'integral(f(x),x,_sage_const_1 ,oo) File "", line 1, in <module> File "/root/sage-5.8/local/lib/python2.7/site-packages/sage/misc/functional.py", line 740, in integral return x.integral(*args, **kwds) File "expression.pyx", line 9302, in sage.symbolic.expression.Expression.integral (sage/symbolic/expression.cpp:38413) File "/root/sage-5.8/local/lib/python2.7/site-packages/sage/symbolic/integration/integral.py", line 688, in integrate return definite_integral(expression, v, a, b) File "function.pyx", line 429, in sage.symbolic.function.Function.__call__ (sage/symbolic/function.cpp:5064) File "/root/sage-5.8/local/lib/python2.7/site-packages/sage/symbolic/integration/integral.py", line 173, in _eval_ return integrator(*args) File "/root/sage-5.8/local/lib/python2.7/site-packages/sage/symbolic/integration/external.py", line 21, in maxima_integrator result = maxima.sr_integral(expression, v, a, b) File "/root/sage-5.8/local/lib/python2.7/site-packages/sage/interfaces/maxima_lib.py", line 739, in sr_integral raise ValueError, "Integral is divergent." ValueError: Integral is divergent. |
sum((-1)^n*cos(pi/n), n, 1, +Infinity) sum((-1)^n*cos(pi/n), n, 1, +Infinity) |
f(x)>f(x+1),lim(f(x))=0, convergent f(x)>f(x+1),lim(f(x))=0, convergent |
([[x > -1, x < 0], [x > 0, x < 1]], 'R=1') ([[x > -1, x < 0], [x > 0, x < 1]], 'R=1') |
([[]], 'divergent') ([[]], 'divergent') |
([[x < 0], [x > (3/2)]], 'R=3/2') ([[x < 0], [x > (3/2)]], 'R=3/2') |
([[x < 0], [x > 2*e^(-1)]], 'R=2/e') ([[x < 0], [x > 2*e^(-1)]], 'R=2/e') |
[[x < -2], [x > 1]] [[x < -2], [x > 1]] |
1/24*x^4 - 1/2*x^2 + 1 1/24*x^4 - 1/2*x^2 + 1 |
-1/3*x^4 + x^2 -1/3*x^4 + x^2 |
63/524288*x^5 + 35/65536*x^4 + 5/2048*x^3 + 3/256*x^2 + 1/16*x + 1/2 63/524288*x^5 + 35/65536*x^4 + 5/2048*x^3 + 3/256*x^2 + 1/16*x + 1/2 |
-21*(x - 1)^5 + 15*(x - 1)^4 - 10*(x - 1)^3 + 6*(x - 1)^2 - 3*x + 4 -21*(x - 1)^5 + 15*(x - 1)^4 - 10*(x - 1)^3 + 6*(x - 1)^2 - 3*x + 4 |
-1/24*(x - 2)^3*(sin(2)^3 - 8*sin(2)^2*cos(2) - 8*cos(2)^3)/sin(2)^3 - 1/8*(x - 2)^2*(3*sin(2)^2 + 4*cos(2)^2)/sin(2)^2 - 1/2*(x - 2)*(sin(2) - 2*cos(2))/sin(2) - log(2) + log(sin(2)) -1/24*(x - 2)^3*(sin(2)^3 - 8*sin(2)^2*cos(2) - 8*cos(2)^3)/sin(2)^3 - 1/8*(x - 2)^2*(3*sin(2)^2 + 4*cos(2)^2)/sin(2)^2 - 1/2*(x - 2)*(sin(2) - 2*cos(2))/sin(2) - log(2) + log(sin(2)) |
('approximation=', 0.309016994374947, 'sin(pi/10)=', 0.309016994374947) ('approximation=', 0.309016994374947, 'sin(pi/10)=', 0.309016994374947) |
('appoximation=', 5.99832306193219, 'lim(f(x))=', 6) ('appoximation=', 5.99832306193219, 'lim(f(x))=', 6) |
|