LA+Chapter+6+Ex+1+new+Solved+by+서승완+refinalized+by+김선호

2075 days ago by sunhokim

x, y, z = var('x y z') h(x, y, z) = [x+5*y+2*z, x-4*y, 6*x+y-z] T = linear_transformation(QQ^3, QQ^3, h) A = T.matrix(side='right') x = vector(QQ,[4, 3, 13]) print "A=" print A print print "Domain of T = " print T.domain() #정의역 print print "Codomain of T=" print T.codomain() #공역 print print "T(x)=", T(x) #이미지 print print "A*x =" , A*x # 표준행렬과 벡터의 곱 
       
A=
[ 1  5  2]
[ 1 -4  0]
[ 6  1 -1]

Domain of T = 
Vector space of dimension 3 over Rational Field

Codomain of T=
Vector space of dimension 3 over Rational Field

T(x)= (45, -8, 14)

A*x = (45, -8, 14)
A=
[ 1  5  2]
[ 1 -4  0]
[ 6  1 -1]

Domain of T = 
Vector space of dimension 3 over Rational Field

Codomain of T=
Vector space of dimension 3 over Rational Field

T(x)= (45, -8, 14)

A*x = (45, -8, 14)