x, y, z = var('x y z')
h(x, y, z) = [x+5*y+2*z, x-4*y, 6*x+y-z]
T = linear_transformation(QQ^3, QQ^3, h)
A = T.matrix(side='right')
x = vector(QQ,[4, 3, 13])
print "A="
print A
print
print "Domain of T = "
print T.domain() #정의역
print
print "Codomain of T="
print T.codomain() #공역
print
print "T(x)=", T(x) #이미지
print
print "A*x =" , A*x # 표준행렬과 벡터의 곱
|
A=
[ 1 5 2]
[ 1 -4 0]
[ 6 1 -1]
Domain of T =
Vector space of dimension 3 over Rational Field
Codomain of T=
Vector space of dimension 3 over Rational Field
T(x)= (45, -8, 14)
A*x = (45, -8, 14)
A=
[ 1 5 2]
[ 1 -4 0]
[ 6 1 -1]
Domain of T =
Vector space of dimension 3 over Rational Field
Codomain of T=
Vector space of dimension 3 over Rational Field
T(x)= (45, -8, 14)
A*x = (45, -8, 14)
|